STRATEGIES FOR THE DEVELOPMENT OF MARITIME TRANSPORTATION AND METHODS FOR EFFICIENT OPERATION

Abstract. Maritime transport plays a key role in world trade and international supply chains and plays an integral part in the global economy by ensuring the efficient transportation of goods over long distances. This article analyzes the impact of maritime transport on international trade, in particular, providing access to markets, reducing logistics costs and supporting export-import operations. Special attention is paid to the study of strategies for the development of maritime transport systems and scientific methods that contribute to their effective functioning. An overview of various development strategies is offered, including the modernization of port infrastructure, optimization of transportation processes, introduction of the latest technologies and environmental protection. It also examines scientific approaches to modeling and analyzing maritime transport systems to improve routes, reduce fuel consumption, and optimize logistics processes. Prospects and challenges affecting maritime transport, including the growth of world trade, changes in international trade agreements and requirements for sustainable development are considered. Technological innovations that affect the efficiency of maritime transport, such as the automation of port operations, the use of unmanned vessels and environmentally friendly solutions aimed at ensuring the efficient development of maritime transport, increasing competitiveness and sustainable development of the industry are studied. Attention is focused on the need for cooperation between countries and regulatory authorities to develop international logistics chains, ensure the safety of sea routes and build infrastructure. As a result, recommendations are made for the further development of maritime transport in order to optimize trade flows and support sustainable growth of the global economy.

Keywords: maritime transport, development strategies, scientific methods, route optimization, fuel consumption, logistics process optimization, technological innovations, sustainable growth.
Анотація. Морський транспорт відіграє ключову роль у світовій торгівлі та міжнародних ланцюгах поставок і є невід'ємною частиною гlobalної економіки, забезпечуючи ефективне транспортування товарів на великі відстані. У даній статті проаналізовано вплив морського транспорту на міжнародну торгівлю, зокрема, забезпечення доступу до ринків, зниження логістичних витрат та підтримку експортно-імпортних операцій. Особливу увагу приділено вивченню стратегій розвитку морських транспортних систем та наукових методів, які сприяють їх ефективному функціонуванню. Пропонується огляд різних стратегій розвитку, включаючи модернізацію портової інфраструктури, оптимізацію транспортних процесів, впровадження новітніх технологій та захист навколишнього середовища. Також розглядаються наукові підходи до моделювання та аналізу морських транспортних систем з метою вдосконалення маршрутів, зменшення споживання палива та оптимізації логістичних процесів. Розглядаються перспективи та виклики, що впливають на морський транспорт, включаючи зростання світової торгівлі, зміни в міжнародних торговельних угодах та вимоги сталого розвитку. Досліджуються технологічні інновації, що впливають на ефективність морського транспорту, такі як автоматизація портових операцій, використання безпілотних суден та екологічно чистих рішень, спрямованих на забезпечення ефективного розвитку морського транспорту, підвищення конкурентоспроможності та сталого розвитку галузі. Акцентується увага на необхідності співпраці між країнами та регуляторними органами для розвитку міжнародних логістичних ланцюгів, забезпечення безпеки морських шляхів та розбудови інфраструктури. У підсумку надано рекомендації щодо подальшого розвитку морського транспорту з метою оптимізації торговельних потоків і підтримки сталого зростання світової економіки.

Ключові слова: морський транспорт, стратегії розвитку, наукові методи, оптимізація маршрутів, витрати палива, оптимізація логістичних процесів, технологічні інновації, сталий розвиток.

Problem Formulation. Efficient and sustainable maritime transport faces challenges in route optimization, fuel consumption, logistics processes, environmental impact, infrastructure development, international collaboration, and technological innovation. Solutions are needed to address these challenges and optimize trade flows while ensuring cost-effectiveness and environmental sustainability.
Purpose. The purpose of the article is to analyze the strategies for the development of maritime transport systems and scientific methods that contribute to their effective functioning, as well as to study various aspects, challenges and prospects affecting maritime transport.

Literature survey. Maritime transport faces a number of prospects and challenges that affect its development and operation. Some of them include the growth of global trade, as this poses a challenge to maritime transport to ensure sufficient capacity and efficiency for the transportation of large volumes of cargo. This requires the development and modernization of port infrastructure, improvement of logistics processes and the use of the latest technologies.

Changes in international trade agreements or the signing of new trade contracts and changes in existing trade policies can have a major impact on maritime transport. They can lead to changes in trade volumes between regions, changes in transportation directions, and affect cargo distribution and routing. Dai et al. (2023) propose using reinforcement learning to optimize berth allocation in maritime transportation, taking into account quay crane setup times. Their approach aims to improve efficiency in port operations. Pense (2019) explores the concepts of e-Navigation and e-Maritime, specifically focusing on their implementation in Turkey. The study discusses strategies for the integration of maritime information technology systems in the country. Hein (2022) addresses power and energy management optimization for marine transportation electrification. The research aims to enhance the efficiency and sustainability of marine transportation by optimizing energy usage. Hu et al. (2023) present a GIS-data-driven approach for efficient and safe path planning of autonomous ships in maritime transportation. Their method utilizes geographic information systems to optimize navigation and ensure safety. Roberts et al. (2019) contribute to a special issue on eTransportation, focusing on the operation and control of electrified and intelligent maritime transportation grids. The study explores advancements in the field and their potential impact. Zincir et al. (2023) conduct a SWOT analysis of carbon capture, storage, and transportation for the maritime industry. The study assesses the strengths, weaknesses, opportunities, and threats of implementing such solutions in the maritime sector. Melnyk et al. (2022) discuss integrated ship cybersecurity management as a part of maritime safety and security systems. The study emphasizes the importance of cybersecurity measures in ensuring the safety of maritime operations. Melnyk et al. (2022) focus on the development of computer-based remote technologies and course control systems for autonomous surface ships. The research aims to enhance the autonomous capabilities and navigation systems of such vessels. Mollaoglu et al. (2023) present a bibliometric review of route optimization in maritime transportation, with a focus on environmental sustainability and operational efficiency. The study examines the existing literature and identifies trends and gaps in the field.
The reviewed literature highlights key topics in maritime transportation, including berth allocation optimization, e-Navigation and e-Maritime concepts, power and energy management, path planning for autonomous ships, intelligent transportation grids, carbon capture and storage, ship cybersecurity, remote technologies for autonomous surface ships, and route optimization. These studies highlight the use of advanced technologies and emphasize the importance of cybersecurity and international collaboration. Overall, the literature contributes to improving efficiency, sustainability, and safety in maritime transportation.

Methods and materials. The growing focus on sustainable development places demands on maritime transport to reduce its environmental impact. This includes reducing emissions of harmful substances, energy efficiency of ships, use of environmentally friendly technologies and development of green ports. Meeting these requirements may require investment in new technologies and infrastructure. Geopolitical changes, such as changes in the geopolitical situation of regions, conflicts, sanctions and other factors may have an impact on maritime transportation. They can create new obstacles or opportunities for the development and efficient operation of maritime transport.

In order to overcome these challenges and take advantage of the prospects of maritime transport, it is necessary to develop strategies aimed at modernizing and improving infrastructure, improving logistics processes, introducing the latest technologies, and cooperating between countries and regulatory authorities. At the same time, it is important to ensure sustainable development, reduce environmental impact, and ensure the safety and efficiency of maritime transportation systems.

The development of scientific foundations and methods for ensuring the efficient operation of transport systems is an important task to improve mobility and reduce the negative impact of transport on the environment. This area of research includes the development of new technologies, methods of transport management, analysis and forecasting of traffic flows, implementation of efficient logistics systems and other aspects.

One of the key areas of development is the use of information technology to collect, analyze and process traffic data. Modern data collection systems, such as sensors, GPS trackers, and surveillance cameras, help to obtain detailed information about vehicle movements, speed, traffic density, and other parameters. This data can be used to analyze and predict traffic flows, develop efficient routes, and plan traffic.

Another important aspect is the development and implementation of environmentally friendly transportation technologies. This includes the development of electric and hybrid cars, the use of alternative fuels such as hydrogen, biofuels, and others. In addition, research is being conducted to develop new materials and technologies aimed at reducing the weight of vehicles and improving their energy efficiency.
Also, the development of efficient traffic management systems is an important aspect. The development of effective traffic management systems in maritime transport is important for ensuring the safety, efficiency and sustainability of maritime transportation. Some of the methods and approaches used in this area include, table 1;

Table 1

Various aspects related to the efficient functioning of maritime transport systems

<table>
<thead>
<tr>
<th>Aspects</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of automated ship control systems</td>
<td>Modern ships are equipped with automated systems such as autopilots, radars, automatic traffic information systems, etc. These systems help to ensure the safety and efficiency of the vessel's movement, as well as help to avoid collisions and other dangerous situations.</td>
</tr>
<tr>
<td>Development of ship tracking systems</td>
<td>The use of satellite technology, such as the Automatic Identification System (AIS), allows for real-time tracking of vessel movements. This helps to determine the position of ships, take into account their routes and predict possible conflicts. Such data can be used to plan routes, avoid congestion, and optimize ship traffic.</td>
</tr>
<tr>
<td>Development of ship tracking systems</td>
<td>The use of satellite technology, such as the Automatic Identification System (AIS), allows for real-time tracking of vessel movements. This helps to determine the position of ships, take into account their routes and predict possible conflicts. Such data can be used to plan routes, avoid congestion, and optimize ship traffic.</td>
</tr>
<tr>
<td>Analysis and forecasting of cargoflows</td>
<td>Analytical methods and models are used to help analyze and forecast maritime cargoflows. This includes analyzing data on traffic volumes, directions, vessel types, and other parameters. Forecasting maritime flows helps to determine optimal routes, allocate resources, and ensure efficient use of maritime space.</td>
</tr>
<tr>
<td>Optimization of seaports</td>
<td>Seaports are the nodal points of maritime transport systems, and optimizing their operation is an important element of traffic flow management. This may include the introduction of automated systems for allocating vessels to berths, efficient management of cargo flows, optimization of berth and storage space utilization, and improvement of ship reception and dispatch processes.</td>
</tr>
<tr>
<td>Development of maritime logistics</td>
<td>Efficient logistics is a key factor in managing traffic flows in maritime transport. This includes optimization of supply chains, use of intermodal transport interchanges, efficient warehousing and transportation of goods, as well as planning and coordination of activities of various links in the logistics chain.</td>
</tr>
<tr>
<td>Implementation of new technologies</td>
<td>The development and implementation of new technologies is an important aspect of developing efficient maritime transport management systems. This may include the use of drones to monitor and inspect ships and port infrastructure, the use of automated warehouse management systems, and the use of artificial intelligence and data analytics for decision-making and flow forecasting.</td>
</tr>
</tbody>
</table>
These approaches contribute to the efficient functioning of maritime transportation systems, reducing congestion, improving safety and reducing costs. Research and development in this area is aimed at

An analysis of the impact of maritime transport on international trade demonstrates its importance in providing access to markets, reducing logistics costs, and supporting export and import operations. Here is a detailed analysis of each of these aspects:

1. Ensuring access to markets:
 - Maritime transport is the most efficient means of transportation for transporting large volumes of goods over long distances;
 - Large seaports provide deep-water and modern infrastructures that allow ships of various sizes and types to carry out international transportation;
 - Maritime transportation routes connect different regions of the world, providing global connectivity and access to international markets.

2. Reduction of logistics costs:
 - Compared to other modes of transportation, maritime transport is usually more cost-effective, especially for the transportation of large volumes of goods;
 - The scale of maritime transportation allows the use of containerization and multimodal transportation, which helps to optimize logistics processes and reduce costs;
 - Maritime transport companies offer competitive tariffs and a variety of services, which helps to reduce logistics costs for businesses.

3. Support for export and import operations:
 - Sea transport is indispensable for export and import operations, especially when transporting large volumes of goods over long distances;
 - Large container ships provide efficient and safe transportation of various types of goods, including raw materials, finished goods, and machinery;
 - Maritime transport also provides flexibility in the choice of routes and delivery points, which helps companies to efficiently organize their export and import chains.

Thus, maritime transport plays an important role in international trade, providing access to markets, reducing logistics costs and supporting export and import operations. This makes it an indispensable tool for the global economy and supporting the sustainable growth of world trade.

Development strategies and scientific methods play a key role in ensuring the efficient functioning of this industry. Below are some of the most important strategies and methods that contribute to the efficient functioning of maritime transportation systems:

Infrastructure modernization and development. This strategy involves the improvement and expansion of seaports, terminals, shipbuilding docks, and other
important infrastructure elements. This will increase throughput, reduce vessel-handling time and ensure more efficient cargo handling.

Use of the latest technologies. The introduction of the latest technologies, such as automated port management systems, electronic documentation and cargo tracking systems, helps to optimize processes and increase productivity. The use of unmanned vessels and other autonomous vehicles is also being explored.

Optimization of routes and logistics processes. Through data research and analysis, as well as the use of mathematical models and algorithms, optimal routes for ships can be found, which will ensure efficient fuel use and reduce costs. We are also exploring opportunities to use multimodality concepts to integrate maritime transport with other modes of transport to ensure optimal logistics.

Development of environmentally friendly solutions. Increasing attention to sustainable development leads to the search for environmentally friendly solutions in maritime transport. Possibilities of using alternative fuels such as green hydrogen, electric or gas drive systems are being explored. Attention is also being paid to reducing the environmental impact of ships by implementing efficient emission treatment systems.

Fig.1 Strategies and methods of the efficient functioning of maritime transportation systems

These strategies and scientific methods help to increase the efficiency and competitiveness of maritime transportation systems. The use of the latest
technologies, route optimization, infrastructure development and the creation of environmentally friendly solutions help to improve market access, reduce logistics costs and support export and import operations in maritime transport.

The analysis and modeling of maritime transport systems to improve routes reduce fuel consumption and optimize logistics processes are based on various scientific approaches. Some of them are listed below:

1. Mathematical modeling allows for the analysis and optimization of various aspects of maritime transportation, such as vessel routing, terminal placement, traffic schedules, vessel loading and unloading planning, etc. These models take into account various factors such as time, distance, fuel consumption, cargo volume, and other constraints to provide optimal solutions.

2. Simulation and optimization models allows recreating real conditions of maritime transportation and determining optimal strategies. This allows analyzing different scenarios, taking into account unusual situations and testing new concepts without real experimentation. Optimization algorithms are used to find the best solutions based on specified criteria, such as minimizing fuel consumption or maximizing productivity.

3. Analytical methods are used to identify patterns and trends in the operation of maritime transportation systems. This may include statistical data analysis, economic models, optimization methods and other analytical tools. These methods allow assessing the effectiveness and predicting the results of decisions, as well as identify opportunities for improvement.

4. Geographic information system (GIS) is used to analyze spatial data and determine optimal routes in maritime transportation. It allows to take into account geographical characteristics, distances, natural constraints and other factors to plan optimal transportation routes and infrastructure placement.

These scientific approaches help to develop and improve strategies for the development of maritime transport systems, optimize routes, reduce fuel consumption and improve logistics processes. They allow us to make informed decisions on the development and efficient operation of maritime transport.

Technological innovations have a significant impact on the efficiency of maritime transportation. Some of them include automation of port operations, use of unmanned vessels, environmentally friendly solutions.

Thus, the use of automated systems and robotics in ports helps to improve the efficiency and speed of cargo handling. Automated crane systems, container terminals with automatic sorting systems, and automatic loading technologies reduce cargo-handling time and reduce the risk of errors. The development of unmanned vessels and drones for maritime transportation allows for the transportation of goods without the presence of people on board. This can lead to greater efficiency, lower operating costs, and reduced risk of accidents. The growing
focus on sustainable development is driving the development and use of environmentally friendly technologies in maritime transportation. This includes the use of energy-efficient ships, the use of alternative energy sources such as solar and wind power, as well as the introduction of emission management systems and the reduction of harmful emissions into the atmosphere and water.

These technological innovations help to reduce costs, improve efficiency, ensure safety and reduce the negative environmental impact of maritime transportation. They are key factors in strategies to develop and maintain sustainable maritime transport systems.

Cooperation between countries and regulatory authorities plays an important role in the development of international logistics chains, ensuring the safety of sea routes and building infrastructure. Here are some aspects that emphasize the need for such cooperation:

- Development of international logistics chains: International trade requires well-connected logistics chains that ensure the smooth flow of goods across different countries and transportation systems. Cooperation between countries in customs procedures, standards, regulatory policies and documentation helps to reduce trade barriers and facilitate border crossings.

- Ensuring the safety of sea routes: Maritime routes are key to global trade, and their safe operation is of great importance. Cooperation between countries in the field of maritime security, exchange of information on potential threats, joint planning and coordination of emergency response helps to ensure the safety of sea routes and protection of cargo.

- Infrastructure development: Maritime transportation requires adequate infrastructure, including ports, terminals, shipyards, and communication systems. Cooperation between countries in infrastructure development, financing, and joint projects helps to improve access to maritime transport, increase its capacity, and reduce costs.

These aspects emphasize the importance of cooperation between countries and regulatory authorities in the field of maritime transport. Through joint efforts and coordination, it is possible to achieve the efficient functioning of maritime transport systems, ensure the safety and stability of trade flows, and promote the sustainable development of this important industry.

Based on the analysis and taking into account the above-mentioned aspects, we can formulate some recommendations for the further development of maritime transport in order to optimize trade flows and support sustainable growth of the world economy:

- to invest in the development and modernization of maritime infrastructure, including ports, terminals, and communication systems. To increase throughput, improve cargo-handling efficiency, reduce waiting time and reduce logistics costs, it is necessary:
- to apply to the latest technologies in maritime transport, such as the automation of port operations, the use of unmanned vessels, and smart logistics, can significantly improve the efficiency and accuracy of processes as it is important to promote the innovation and adoption of these technologies in the maritime transport industry;
- to develop of standards and norms governing international logistics processes will help ensure compatibility and coherence between countries. Cooperation between countries, regulators and other stakeholders is also important to jointly address issues related to the development and management of maritime transport;
- to actively work on the implementation of environmentally friendly solutions in maritime transport, such as the use of alternative fuels, reduction of harmful substances and environmental protection measures. Taking into account the requirements for sustainable development will help to support maritime transport in the future;
- to promote research and innovation in the field of maritime transport. Supporting research projects, facilitating interaction between academic institutions and industry, and creating favorable conditions for the introduction of new technologies and solutions can contribute to the further development and efficient operation of maritime transport.

These recommendations are aimed at optimizing trade flows and supporting sustainable growth of the global economy by improving the efficiency of maritime transport and ensuring favorable conditions for the development of the industry.

Conclusion. In conclusion, maritime transport plays a crucial role in global trade, and its efficient functioning and support for sustainable economic growth rely on scientific approaches, development strategies, and technological innovations. Scientific modeling and analysis of maritime transport systems contribute to route optimization, fuel efficiency, and logistics process optimization. The prospects and challenges for maritime transport encompass the increasing volume of global trade, changes in international trade agreements, and sustainability requirements. Technological innovations such as automation of port operations, unmanned vessels, and eco-friendly solutions enhance the efficiency of maritime transport. Collaboration between countries and regulatory bodies is necessary for the development of international logistics chains, ensuring the safety of sea routes, and infrastructure development. Recommendations for further development of maritime transport include optimizing trade flows and fostering sustainable growth of the global economy.

References:

Література:

