THE INFLUENCE OF EUROPEAN INTEGRATION AND ARTIFICIAL INTELLIGENCE ON THE DEVELOPMENT OF INFORMATION INFRASTRUCTURE IN HIGHER EDUCATION INSTITUTIONS

Abstract. The article explores the interplay between European integration and the development of artificial intelligence (AI), focusing on their impact on the operations of higher education institutions (HEIs), particularly in terms of their information infrastructure. This dynamic creates both significant challenges and unprecedented opportunities. Central to the discussion is the necessity for HEIs to adopt a dynamic and adaptable strategy. This strategy should account for both the broader contexts of European integration and artificial intelligence, as well as the unique aspects of each institution. The article aims to provide HEIs with actionable insights and strategies to effectively navigate this evolving environment. This will ensure their continued relevance, competitiveness, and excellence in delivering high-quality education and research during a period of rapid technological advancement and social change.
European integration is primarily focused on fostering a more unified and interconnected European Higher Education Area (EHEA). While ambitious in scope, this effort encounters several challenges, including the need to comply with data protection standards, adhere to various regulations, and preserve the autonomy, cultural diversity, and unique identity of individual institutions. Concurrently, AI is emerging as a pivotal transformational factor in education. Its integration can enhance learning experiences, innovate research methodologies, and streamline administrative processes. However, incorporating AI into educational infrastructures is not straightforward. It requires significant investment, well-thought-out policies, and a careful consideration of ethical issues, particularly in terms of data privacy and the impact of AI-driven decision-making.

Moreover, implementing AI in higher education necessitates a comprehensive and detailed understanding of its potential, implications, and the level of institutional readiness for this digital shift. This involves exploring various ways AI can be integrated into educational frameworks, from personalized learning algorithms and data-based research tools to automated administrative systems.

Keywords: artificial intelligence, digital transformation, European integration, information infrastructure, higher education institutions

Токар Володимир Володимирович доктор економічних наук, професор, професор інженерії програмного забезпечення та кібербезпеки, Державний торговельно-економічний університет, вул. Кіото, 19, м. Київ, 02156, тел.: (098) 380-51-07, https://orcid.org/0000-0002-1879-5855

Палагута Катерина Олексіївна кандидат економічних наук, доцент, доцент кафедри інженерії програмного забезпечення та кібербезпеки, Державний торговельно-економічний університет, вул. Кіото, 19, м. Київ, 02156, тел.: (099) 753-84-53, https://orcid.org/0000-0003-1167-9509

Сашньова Мар’яна Василівна кандидат технічних наук, доцент, доцент кафедри інженерії програмного забезпечення та кібербезпеки, Державний торговельно-економічний університет, вул. Кіото, 19, м. Київ, 02156, тел.: (097) 900-14-23, https://orcid.org/0000-0002-3501-0933

ВПЛИВ ЄВРОПЕЙСЬКОЇ ІНТЕГРАЦІЇ ТА ШТУЧНОГО ІНТЕЛЕКТУ НА РОЗВИТОК ІНФОРМАЦІЙНОЇ ІНФРАСТРУКТУРИ ЗАКЛАДІВ ВИЩОЇ ОСВІТИ

Анотація. У статті досліджено взаємозв’язок між європейською інтеграцією та розвитком сфери штучного інтелекту (ШІ), а також їхнім впливом на роботу закладів вищої освіти (ЗВО), зокрема на їх інформаційну
інфраструктуру, створюючи як величезні виклики, так і безпрецедентні можливості. Суть дискусії обертається навколо необхідності для ЗВО прийняти динамічну і гнучку стратегію, яка не тільки враховує контексти європейської інтеграції та штучного інтелекту, а й особливості кожної установи. Мета статті полягає в тому, щоб забезпечити ЗВО практичними завданнями і стратегіями, які дозволять їм ефективно орієнтуватися в мінливому середовищі, тим самим забезпечуючи постійну актуальність, конкурентоспроможність і досконалість у наданні високоякісних освітніх послуг та проведення досліджень в епоху швидкого технологічного прогресу і мінливого соціального середовища.

Європейська інтеграція, в першу чергу, полягає у створенні більш уніфікованого і взаємопов’язаного Європейського простору вищої освіти (ЄПВО). Це прагнення, хоча і далекоглядне за своїми масштабами, пов’язане з певними проблемами, такими як: необхідність дотримання норм захисту даних, дотримання різноманітних нормативно-правових актів і разом із тим збереження автономії, культурного розмаїття та унікальної ідентичності окремих установ. Водночас, штучний інтелект стає ключовим трансформаційним елементом в освітній сфері. Застосування штучного інтелекту збагачує навчальний досвід, новаторські методи дослідження та оптимізує адміністративні операції. Однак впровадження штучного інтелекту в освітню інфраструктуру не позбавлене перешкод і потребує значних інвестицій, формулювання продуманої політики і уважного ставлення до етичних питань, особливо тих, що стосуються конфіденційності даних і наслідків процесів прийняття рішень, керованих ШІ.

Крім того, впровадження штучного інтелекту в ЗВО вимагає глибокого і детального розуміння його потенціалу, наслідків і ступеня готовності, необхідного для того, щоб прийняти цю цифрову революцію. Це можливо лише за умови вивчення різних аспектів, за допомогою яких ШІ може бути інтегрований в освітню інфраструктуру, починаючи від персоналізованих алгоритмів навчання і дослідницьких інструментів, заснованих на аналізі баз даних, і закінчуючи автоматизованими адміністративними системами.

Ключові слова: штучний інтелект, цифрова трансформація, європейська інтеграція, інформаційна інфраструктура, заклади вищої освіти.

Statement of the problem. The convergence of European integration and rapidly evolving Artificial Intelligence (AI) presents significant challenges and opportunities for higher education institutions (HEIs) regarding their information infrastructure development. European integration policies, aiming to harmonize and interconnect systems, necessitate compatible and efficient information systems within HEIs. This mandates a high degree of compatibility in academic, administrative, and research data across institutions, potentially requiring substantial
infrastructure reassessments and revamps for compliance, interoperability, and effective participation in the European Higher Education Area (EHEA).

Meanwhile, AI’s transformative potential in learning environments, research methodologies, and administrative processes brings significant investment needs, policy development, and ethical considerations related to data privacy and AI-driven decision-making. Integrating AI into information infrastructure requires a nuanced understanding of the technology, its impacts, and institutional readiness for this digital transformation.

This complex interplay necessitates a thorough examination of existing information infrastructure within HEIs, alongside an understanding of integration and AI demands and challenges. Subsequently, strategic responses aligned with educational excellence and innovation must be formulated.

Analysis of recent studies and publications. Numerous studies have delved into the realms of information infrastructure within educational contexts, exploring the intersection of digital educational technologies and the evolving landscape of educational spaces. These investigations provide valuable insights into the integration of technology within educational settings and its impact on learning outcomes.

For instance, Y. Shestack emphasizes the pivotal role of modern information and communication technologies (ICT) in the evolution of educational content, methodologies, and management systems within higher education institutions. This integration is instrumental in cultivating a cohesive and efficient digital environment. It encompasses the strategic planning, organization, and oversight of educational processes. Crucially, the development of telecommunication infrastructure serves as a cornerstone for all activities in higher education, facilitating the creation, storage, and dissemination of educational materials. This dynamic information landscape also enables the integration of “informal learning” into continuous education systems. The successful adoption of global innovations is vital for ensuring the sustainability and competitiveness of higher education institutions, meeting the burgeoning demand for personalized educational services [1, p. 155]. However, the author overlooks the explicit discussion of the roles played by artificial intelligence and European integration in shaping the development of information infrastructure within the educational landscape.

N. Pyzh and T. Halenko assert that establishing an information-rich educational environment within higher education institutions (HEIs) presents a multifaceted challenge, encompassing organizational and economic hurdles that demand immediate attention. Equipping HEI faculty to navigate such an environment necessitates not only an understanding of its immediate implications but also foresight into long-term effects. Enriching this environment with educational content, refining its management structures, and ensuring compliance with established standards, while expanding these standards, significantly reshapes
the organizational and technological framework of the educational process, thereby enhancing educational quality. Therefore, key priorities include instituting systematic requirements for faculty concerning IT knowledge and skills, formulating strategies for integrating contemporary scientific and technological advancements into the educational curriculum, and guiding pedagogical practices to prepare individuals for IT integration while fostering independent working skills [2, p. 120]. Although the authors emphasize pedagogical endeavors, a broader perspective encompassing student viewpoints and administrative complexities could enrich the paper’s analysis.

Q. Islam and S.M.F.A. Khan have examined the effects of infrastructure upgrades, sustainability efforts, and IT integration within Saudi Arabian universities, situated within the framework of Saudi Vision 2030. Their study reveals a positive correlation between enhancements in infrastructure and various factors such as sustainability, educational quality, innovation, and research productivity. It uncovers intricate relationships between university characteristics and improvements in infrastructure that influence educational outcomes. The research underscores the beneficial impacts of sustainability initiatives driven by information technology, such as the incorporation of ESG principles into higher education. These advancements play a crucial role in fostering innovation, sustainability, and improving the quality of education. Furthermore, the study highlights the complex interplay between pedagogical shifts, technology adoption, and sustainability measures [3, p. 225-227]. Nonetheless, it’s important to note that the findings, while insightful, may not be universally applicable to institutions in diverse cultural contexts. Additionally, the study’s cross-sectional design limits its ability to establish long-term trends and causal relationships. Furthermore, a predominant focus on academics and students might overlook the perspectives of other stakeholders involved.

O. Dobrovitska and Y. Luchko assert that the widespread integration of cloud technologies in education necessitates novel educational methodologies and organizational structures for learning. These technologies offer various advantages, including convenient access to learning materials, real-time collaboration from diverse locations, fostering teamwork, and cost-effectiveness. Additionally, many cloud services are affordable or free, enhancing accessibility to expensive software. Other benefits encompass device-independent access, long-term data storage, and efficient information management. Nonetheless, challenges such as reliance on internet connectivity, potential data breaches, and security concerns exist. The authors emphasize that cloud technologies notably enhance educational management in higher education institutions, improve digital competency, facilitate information access, and promote the adoption of digital courses and e-learning platforms [4, p. 68-69]. However, their focus on cloud technology overlook other pertinent IT advancements in education. Furthermore, the paper lacks discussion on
the policy implications associated with integrating cloud technology in educational institutions, which is vital for practical implementation.

R. Chugh, D. Turnbull, M.A. Cowling, R. Vanderburg, and M.A. Vanderburg explore the complex process of integrating educational technology (EdTech) into higher education institutions (HEIs), stressing the importance of a multifaceted approach to decision-making. They introduce an extensive model for EdTech decision-making, comprising five key elements: technology, stakeholder perspectives, academic disciplines, performance metrics, and theoretical foundations. This model is designed to aid HEIs in making well-informed, evidence-based decisions regarding EdTech adoption, with the aim of enriching teaching and learning experiences and enhancing student outcomes [5, p. 16423-16424]. However, the study has its limitations, as it solely focused on English-language research from specific platforms, thereby excluding other sources and languages. Additionally, it did not encompass studies based on secondary data sources such as surveys, interviews, and observations.

Based on a review of existing regulations, guidelines, and progress in the digital realm, S. Martynenko posits that digitalization stands as a pivotal force in reforming and modernizing education. This transformation encompasses improvements in the quality and accessibility of education, the personalization and diversification of learning experiences, and the augmentation of individuals’ digital competencies [6, p. 93]. However, the author fails to explicitly discuss the roles of AI technologies and European integration in fostering this change, neglects to address potential challenges and practical considerations inherent in implementing digital strategies within higher education, and downplays the significance of other critical factors such as infrastructure, funding, and policy support necessary for successful digitalization in education.

Therefore, while the abovementioned studies have provided valuable insights into different facets of information technology utilization within higher education, it is imperative to underscore the necessity for further exploration into the transformation of information infrastructure of higher education institutions within the broader framework of European integration and the increasingly prevalent incorporation of artificial intelligence in educational activities.

The purpose of the article is to offer insights into the impact of artificial intelligence and European integration on the development of information infrastructure in higher education institutions seeking to outline potential strategies for adapting to new opportunities and addressing challenges that arise from these influences.

Outline of the main material. The information infrastructure within higher education institutions is intricate and varied, mirroring the wide array of requirements from students, educators, researchers, and administrative personnel. Table 1 delineates the pivotal aspects of this information infrastructure, underscoring
the fundamental elements that underpin contemporary educational settings. A succinct description accompanies each element, providing insight into its crucial role within the broader infrastructure.

Table 1

<table>
<thead>
<tr>
<th>Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network infrastructure</td>
<td>The network infrastructure encompasses a comprehensive array of hardware, software, and protocols designed to facilitate the seamless transmission of data across various devices and platforms.</td>
</tr>
<tr>
<td>Data centers</td>
<td>Data centers serve as centralized repositories for academic research data, student records, administrative documents, and other institutional information. Physical data centers consist of servers, storage devices, and networking equipment housed in dedicated facilities, while cloud-based data centers leverage remote servers and virtualization technology to provide scalable storage solutions over the internet.</td>
</tr>
<tr>
<td>Learning management systems (LMS)</td>
<td>Learning management systems enable institutions to offer blended and fully online courses while facilitating student progress tracking and fostering educator-student communication. LMS platforms typically include course content management, online assessments, discussion forums, and gradebooks.</td>
</tr>
<tr>
<td>Administrative systems</td>
<td>Administrative support systems consist of a diverse range of software applications and tools designed to streamline processes such as admissions, financial management, human resources, and regulatory compliance.</td>
</tr>
<tr>
<td>Digital libraries</td>
<td>Digital resource repositories, commonly known as digital libraries, provide students, faculty, and researchers with online access to a wide array of scholarly materials, including journals, e-books, research datasets, and multimedia resources.</td>
</tr>
<tr>
<td>Security systems</td>
<td>Security systems include a range of proactive strategies, technologies, and best practices designed to protect sensitive information, prevent unauthorized access, and mitigate cybersecurity risks. These measures encompass network security protocols, such as firewalls, intrusion detection systems, and encryption algorithms, to safeguard data transmission and communication channels.</td>
</tr>
<tr>
<td>Student data management systems (SDMS)</td>
<td>Student data management systems, commonly referred to as SDMS, are integral components of higher education institutions, responsible for overseeing and managing student-related data throughout the academic lifecycle. These comprehensive systems encompass a range of functionalities, including student enrollment, academic records management, course registration, and grading.</td>
</tr>
<tr>
<td>Research management tools</td>
<td>Research management tools consist of a wide range of functionalities, including project proposal submission, grant management, budget tracking, compliance monitoring, and reporting.</td>
</tr>
<tr>
<td>Communication platforms</td>
<td>Communication platforms include email systems, instant messaging applications, video conferencing tools, discussion forums, and social media platforms, providing multiple channels for communication and interaction.</td>
</tr>
<tr>
<td>Cloud services</td>
<td>Cloud services encompass a wide range of offerings, including cloud storage, computing infrastructure, software as a service (SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS).</td>
</tr>
</tbody>
</table>

Source: compiled by the authors
Table 2 presents a summary of how European integration influences the information infrastructure of higher education institutions, highlighting the potential advantages and drawbacks for each aspect. European integration brings opportunities for increased cooperation, better resource management, and advancements in educational and research achievements. Nevertheless, it also poses challenges regarding data protection, adherence to regulations, and the preservation of institutional independence and cultural variety.

Table 2

<table>
<thead>
<tr>
<th>Opportunities</th>
<th>Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network infrastructure</td>
<td></td>
</tr>
<tr>
<td>European integration enhances higher education network infrastructure, promoting collaboration and resource sharing. It expands access to educational resources and research tools, facilitating knowledge exchange. Improved connectivity fosters collaborative research and joint online courses, enriching academic experiences across Europe.</td>
<td>European integration introduces challenges such as managing cross-border network complexities, varied regulatory standards, and cybersecurity laws. Ensuring a secure and compliant network amid increased interconnectivity is crucial. It also heightens the risk of widespread cyber-attacks, demanding coordination and investment to balance diverse technological standards and policies effectively.</td>
</tr>
<tr>
<td>Data centers</td>
<td></td>
</tr>
<tr>
<td>European integration may consolidate data centers, optimizing resource usage and enabling large-scale data storage. Shared centers enhance research by providing access to extensive datasets and robust processing tools, fostering scientific advancements and academic collaborations. This approach can reduce costs and promote sustainability through resource pooling and optimization across institutions.</td>
<td>Shared data centers raise concerns about data sovereignty and privacy, as data crosses national borders. Varying data protection laws complicate compliance. Centralized centers may heighten vulnerability to major disruptions or cyber-attacks, endangering data security and institutional operations.</td>
</tr>
<tr>
<td>Learning management systems (LMS)</td>
<td></td>
</tr>
<tr>
<td>European integration offers a chance to standardize and improve Learning Management Systems in higher education. Unified platforms could facilitate credit transfer and qualification recognition. Enhanced LMS platforms can accommodate diverse needs, support multilingual content, and foster inclusive education. Shared resources can yield cost savings and enhance software development, promoting best practices in digital education.</td>
<td>European integration poses risks, like the potential loss of unique cultural and educational nuances. Balancing standardization with local identity preservation is challenging. Implementing a unified LMS may encounter resistance due to varying systems, policies, and faculty readiness to embrace new technologies.</td>
</tr>
<tr>
<td>Administrative systems</td>
<td></td>
</tr>
<tr>
<td>European integration streamlines administrative processes via shared systems, enhancing efficiency and reducing burdens. Cohesive policies aid student mobility and collaboration. Unified systems improve data exchange, transparency, and governance. This fosters better alignment with European standards, bolstering higher education quality and international competitiveness.</td>
<td>The threat involves individual institutions losing autonomy to standardized procedures that may not fit their needs. Integrating diverse systems is complex and resource-intensive, causing temporary disruptions and adaptation challenges. Data mismanagement or breaches pose risks, especially with sensitive information crossing borders during transition to unified systems.</td>
</tr>
<tr>
<td>2024</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>№ 2(30)</td>
<td></td>
</tr>
</tbody>
</table>

Digital libraries

European integration can greatly improve digital libraries through resource pooling and expertise sharing, offering a broader collection of academic materials. Collaboration can develop shared preservation methods, ensuring long-term availability. This fosters cross-cultural research, enriching academic experiences and nurturing European identity among students and researchers.

European integration may raise concerns about intellectual property rights and copyright, as materials cross borders. Standardizing library systems may marginalize less spoken languages and cultures, risking diversity loss. Managing a unified system across institutions is challenging, demanding coordination and technological investment.

Security systems

European integration can bolster security systems in higher education. By combining resources and expertise, institutions can enhance cybersecurity, share practices, and respond better to threats. This collaboration fortifies the sector’s security, safeguarding research data and personal information. Joint cybersecurity endeavors can spur new technologies, benefiting the community.

Heightened integration means breaches may impact multiple institutions across borders. Differing cybersecurity standards create vulnerabilities and uniform protection challenges. Compliance with diverse regulations complicates effective security implementation.

Student data management systems (SDMS)

Integration allows harmonizing student data systems, easing mobility and exchanges across Europe. It improves the student experience with streamlined access to records, enrollment, and qualification recognition. Enhanced data management aids policy and institutional decision-making, boosting higher education quality in Europe.

The main concern is jeopardizing student privacy and data security across countries with diverse legal frameworks. Meeting GDPR and other regulations amid cross-border data exchange is challenging. Integrating data systems may complicate handling and risk data security vulnerabilities.

Research management tools

European integration boosts research management tools through cross-border collaboration and resource sharing. This fosters broader projects, pooling expertise and facilities across nations. Integration streamlines administrative tasks and funding access. Enhanced tools aid multinational initiatives, fostering innovation and bolstering Europe’s global research competitiveness.

A threat lies in the complexity of managing cross-border research projects, with varying regulations and funding structures. Coordinating efforts and meeting national standards is laborious. Moreover, integrating research tools may advantage larger institutions, possibly creating inequalities in research opportunities and resources distribution.

Communication platforms

Integrating communication platforms among European higher education institutions enhances collaboration and knowledge sharing. Unified systems facilitate multilingual interactions, breaking language barriers for inclusivity. They enable joint academic events, fostering a European academic community, cultural understanding, and exchange through collaborative projects and conferences.

Standardizing communication platforms across diverse institutions poses challenges in compatibility and user-friendliness. Resistance to new platforms may arise, particularly from those accustomed to existing systems. Ensuring communication security and privacy amid varying regulations is challenging, risking vulnerabilities in information exchange.

Cloud services

European integration speeds up cloud service adoption and optimization in higher education, offering scalable and cost-effective computing resources. Shared cloud services improve disaster recovery and innovation with access to advanced technologies. Integration also enhances standardization and interoperability across institutions.

Relying on cloud services brings risks like dependence on external providers and data sovereignty concerns. Varied data protection laws in Europe complicate cloud management. Concentrating data in the cloud attracts cyber-attacks, posing major security challenges.

Source: compiled by the authors
Table 3 outlines the influence of artificial intelligence on different aspects of higher education information infrastructure, emphasizing the opportunities and challenges involved. AI promises improved efficiency, personalization, and innovation in academia, yet it raises concerns regarding data privacy, security, ethics, and reliance on intricate technologies.

Table 3

<table>
<thead>
<tr>
<th>Opportunities</th>
<th>Threats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network infrastructure</td>
<td>AI-powered networks face risks from advanced cyber-attacks. Complex AI systems may lack transparency, hindering issue identification. Over-reliance on AI may cause workforce skill gaps and inadequate human oversight, vital for handling unpredictable network situations. These factors threaten network reliability and security, heightening vulnerability to disruptions and breaches in institutions.</td>
</tr>
<tr>
<td>Data centers</td>
<td>AI integration in data centers poses risks like biased algorithms impacting research outcomes. Over-reliance risks lack of human oversight and expertise. Concentrating academic data managed by AI may attract cyber-attacks. Complex AI systems challenge troubleshooting and maintenance, needing specialized skills often lacking in academic settings.</td>
</tr>
<tr>
<td>Learning management systems (LMS)</td>
<td>AI in LMS raises privacy and ethical issues by collecting and analyzing vast student data. Bias risks unfair practices. Over-reliance on AI may diminish educator roles, affecting education quality and interactions. Complex AI challenges understanding and oversight, posing accountability and transparency challenges in education.</td>
</tr>
<tr>
<td>Administrative systems</td>
<td>Automation may displace jobs, impacting the workforce. AI decisions, biased by data and algorithms, risk unfair outcomes. Security and privacy concerns arise with AI processing sensitive data, especially personal information. Dependence on AI could hinder operations during system failures or malfunctions.</td>
</tr>
</tbody>
</table>

AI has the potential to transform higher education network infrastructure, creating self-optimizing networks that adjust to usage patterns. Predictive algorithms can prevent failures and optimize bandwidth, ensuring reliable and efficient networks for online learning. AI also improves traffic analysis, enhancing user experiences and resource allocation, crucial for modern education.

AI greatly improves data center efficiency in higher education by optimizing power and cooling, cutting energy use and costs. Predictive maintenance prevents equipment failures, ensuring high reliability. AI manages vast research data with advanced algorithms, speeding processing, analysis, and storage for quicker, better research outcomes, boosting academic knowledge and innovation.

AI automates tasks like grading, allowing educators to focus on creative teaching. Analyzing student data enhances program effectiveness. AI creates immersive learning with natural language processing and machine learning, fostering dynamic educational content.

AI streamlines higher education administrative tasks, boosting efficiency. It automates enrollment, scheduling, and resource allocation, cutting errors and workload. AI analytics inform decision-making, optimizing operations, budgeting, and planning. It improves student services with personalized support via AI chatbots. This advancement creates a nimble administrative environment, meeting evolving student and faculty needs.
Digital libraries

AI significantly improves digital libraries in higher education. Algorithms organize vast resources for easier access. Personalized recommendations aid research efficiency. Advanced search tools through natural language processing and image recognition enhance material discovery. This enriches the learning experience, making it more engaging and effective.

AI in digital libraries raises accuracy and bias concerns in categorization and recommendations. Over-reliance risks limited information diversity, reinforcing biases. Privacy concerns arise from user tracking. Complex AI systems may lack transparency, challenging content integrity and relevance maintenance in libraries.

Security systems

AI strengthens cybersecurity in higher education. It monitors network traffic and user behavior, detecting threats like malware or unauthorized access. AI security learns from past incidents, enhancing prevention. This proactive approach safeguards academic data and digital infrastructure integrity. AI aids data protection compliance with automated monitoring and reporting.

AI integration in security systems introduces vulnerabilities. Sophisticated cyber-attacks may manipulate AI algorithms, leading to complex breaches. Depending solely on AI may widen a skills gap, reducing human involvement. Complex AI systems pose challenges in understanding and mitigating security risks, potentially weakening overall cybersecurity effectiveness.

Student data management systems (SDMS)

AI transforms student data management systems, ensuring efficiency and accuracy. It automates admissions, grading, and administrative tasks, reducing errors. Predictive analytics identify students needing support, improving retention. AI aids curriculum development and resource allocation, customizing education to student needs and industry trends, fostering better outcomes.

AI in student data systems raises privacy and security concerns. AI handling sensitive data risks breaches and unauthorized access. Biased AI may affect admissions, grading, and support decisions. Over-reliance reduces human oversight, risking errors. Complex AI challenges audit and regulation, impacting data governance and accountability.

Research management tools

AI greatly improves research management tools in higher education. It streamlines data analysis, hypothesis generation, and experimental design, processing data faster than humans. AI uncovers new insights, enhancing research innovation. It optimizes resource allocation and project tracking, leading to more impactful outcomes and fostering collaboration among researchers.

AI in research tools raises ethical concerns, especially regarding data privacy and research integrity. AI risks introducing biases, skewing results. Over-reliance may diminish human judgment and critical thinking. Complex AI challenges transparency, impacting research replicability and validation. Misuse potential raises ethical and governance concerns in research.

Communication platforms

AI revolutionizes communication platforms in higher education, offering personalized support through chatbots. It enhances language translation, promoting communication in diverse communities. Analyzing patterns, AI optimizes information flow, fostering a connected academic community.

AI in communication platforms raises privacy and ethical issues as it monitors personal communications. Over-reliance risks impersonal interactions and reduced human engagement. AI may introduce biases, affecting interaction quality and fairness.

Cloud services

AI greatly improves cloud services in higher education with smarter solutions. It optimizes resource allocation and scalability, efficiently meeting academic demands. AI-driven analytics enhance performance and security, offering advanced data processing and storage. This supports various academic functions, fostering a flexible and dynamic educational environment.

AI in cloud services poses challenges. Risks include data privacy breaches as AI handles sensitive academic data. Dependency may reduce control and transparency in data management, raising governance and compliance concerns. Managing AI-integrated cloud services requires specialized skills, potentially widening a skills gap and raising costs. AI vulnerability to manipulation also threatens service integrity.

Source: compiled by the authors
Given the array of opportunities and challenges stemming from European integration and artificial intelligence, each higher education institution must conduct a thorough SWOT analysis. This assessment should delve into internal strengths and weaknesses, considering how European integration and AI impact their systems. Additionally, institutions must acknowledge their unique contexts, including cultural, economic, and technological factors, which may bring additional opportunities and threats. Tailored strategies are vital for leveraging these unique factors and addressing identified threats effectively. Such customization ensures institutions stay competitive and relevant amidst evolving educational landscapes. Strategic planning should remain dynamic, accommodating shifts in technology and integration policies, with stakeholder involvement for holistic implementation.

Conclusions. The exploration of the impact of artificial intelligence (AI) and European integration on the information infrastructure of higher education institutions reveals a complex and multifaceted landscape. As these institutions navigate this terrain, the importance of a strategic and adaptive approach cannot be overstated. European integration and AI present a plethora of opportunities that can significantly enhance the educational and administrative facets of higher education. Improved network infrastructures, optimized data centers, advanced learning management systems, and efficient administrative processes are just a few areas where these influences can lead to transformative changes. Furthermore, the potential for enriched collaborative research, increased resource sharing, and a more inclusive and interconnected academic community across Europe is immense.

The integration of AI brings forth concerns regarding data privacy, security, and the ethical implications of automated decision-making processes. The standardization efforts that come with European integration might also risk diminishing the unique cultural and educational identities of individual institutions. Therefore, it is crucial for higher education institutions to engage in comprehensive SWOT analyses, taking into account not only the general trends but also their specific contexts, including cultural, economic, and technological nuances. Strategies developed should be dynamic, allowing for modifications in response to the evolving landscape of AI and European policies. The involvement of diverse stakeholders, including students, faculty, administrators, and policymakers, is critical in formulating and implementing these strategies. By doing so, institutions can ensure that they remain at the forefront of educational excellence, innovation, and inclusivity, well-equipped to face the challenges and harness the benefits that AI and European integration bring to the realm of higher education.

References:

Література:

2. Pyzh N. Creation of the implementative conditions of information technologies in higher education institutions / N. Pyzh, T. Halenko // Education: Modern Discourses. – 2021. – #4. – pp. 116-121. DOI: https://doi.org/10.37472/2617-3107-2021-4-11

