ASSESSMENT OF SUBNIVAL AND MOUNTAIN-LAWN LANDSCAPE-ECOLOGICAL CONDITIONS OF HIGH MOUNTAINS

Abstract. The aim of the study was to determine the existence of a nival-subnival complex landscape type located at the top of the mountains above the snow border in some places, a high mountain-meadow landscape zone covering a large area in the northern and north-eastern parts of the Lesser Caucasus.

Nival-subnival complex landscape type can be observed on the top of Kapaz, Goshgar mountain. There are subnival-nival-glacial complexes. The sharp physical erosion and fragmentation of rocks in this zone is theoretically interesting. There are also a large number of large and small rock fragments that are the product of erosion. These fragments cover large areas in the northern and northeastern parts of the Lesser Caucasus. The landscape units formed in this zone are theoretically attractive by scattering rock fragments and small rubble materials on the bare slopes.

The main scientific innovation of the research. At present, a map of the density of vegetation in the study area and the north-eastern slope of the Lesser Caucasus has been developed. Analysis of the vegetation density map, which we have compiled based on the analysis of information from space images, shows that severe washing in subalpine meadows has serious environmental consequences. In the mapping map developed on the basis of ArcGis software, the landscape types formed on the slopes on 4 main and 4 transition azimuths of the mountain slopes were analyzed.

Methodology and methods used. Using the most modern methods, ie the decoding of space materials, the current state of the landscapes of the north-eastern slope of the Lesser Caucasus was determined.

- A map of the visibility and vegetation density of the north-eastern slope of the Lesser Caucasus has been developed.
- The direction of changes in the local landscapes was determined by comparing the information in the maps of 40-45 years ago with the new map. Different scale space images, fund and literature materials, landscape and other thematic maps were used in the research work.

Conclusion: The analysis of the vegetation density map shows that serious ecological complications have occurred as a result of severe washing in subalpine meadows.

The slope of the high mountain-meadow complex is 40-450, and there are
many ravine-gobu networks. The large scale of avalanches has led to a sharp fragmentation of the surface of mountain meadows. Intensive pasture erosion has caused many ecological consequences.

- The semi-deserts of the foothills have a wide area and are dominated by sharply arid conditions. The high degree of mineralization of the soil in this landscape necessitates the widespread use of saline and saline soils and reclamation measures.
- In order to protect mountain-meadow landscapes in pastures from soil erosion, pastures should be used systematically.

Keywords: Shahdag, Murovdagh, nival-subnival, high mountain-meadow, mountain-forest, view

Джафарова Латафат Дисертант Кафедри Географії Гянджинський державний університет, М9Н6+63С, Shah Ismayil Khetayi Ave, Ganja, Азербайджан, https://orcid/org:0000-0003-3388-7501

ОЦІНКА СУБНИВАЛЬНИХ І ГІРНИЧО-ГАЗОННИХ ЛАНДШАФТНО-ЕКОЛОГІЧНИХ УМОВ ВИСОКОГОР’Я

Анотація. Мета дослідження полягалась у встановленні існування нівально-субнівального складного типу ландшафту, розташованого у вершинах гір над сніговою межею місцями, високогірно-лугової ландшафтної зони, що охоплює велику площу у північній та північно-східній частини східних районів Малого Кавказу.

Нивально-субнівальний складний ландшафтний тип спостерігається на вершині Кяпаз, гори Гошгар. Зустрічаються субнівально-нівально-льодовикові комплекси. Різка фізична ерозія та фрагментація порід у цій зоні становить теоретичний інтерес. Також є велика кількість великих та дрібних уламків гірських порід, що є продуктом ерозії. Ці фрагменти охоплюють велики площі у північній та північно-східній частини східних районів Малого Кавказу. Ландшафтні одиниці, що утворилися в цій зоні, теоретично привабливі розкиданними по оголених схилах уламками гірських порід і дрібним щебенем.

Основна наукова новизна дослідження. В даний час розроблена карта густоти рослинності досліджуваної території та північно-східного схилу Малого Кавказу. Аналіз карти густоти рослинності, складеної нами з урахуванням аналізу інформації космічних знімків, показує, що сильний змив на субальпійських луках має серйозні екологічні наслідки. У картографічній карті, розробленій на основі програмного забезпечення ArcGis, проаналізовано типи ландшафту, що формуються на схилах по 4 основним та 4 перехідним азимутам гірських схилів.

Використовувані методики та методи. З використанням найсучасніших методів, тобто дешифруванням космічних матеріалів, визначено сучасний стан ландшафтів північно-східного схилу Малого Кавказу.
Розроблено карту видимості та густоти рослинності північно-східного схилу Малого Кавказу.

Напрям змін місцевих ландшафтів визначено шляхом зіставлення інформації карт 40-45-річної давності з новою картою. У роботі використовувалися космічні змінки різного масштабу, фондові та літературні матеріали, ландшафтні та інші тематичні карти.

Висновок: Аналіз карти густоти рослинності показує, що внаслідок сильного змиву на субальпійських луках виникли серйозні екологічні ускладнення.

Ухил високогірно-лугового комплексу 40-450, багато яружен-гобу. Масштаби сходу лавин призвели до різкого дроблення поверхні гірських лугів. Інтенсивна ерозія пасовищ призвела до численних екологічних наслідків.

Висновок: Аналіз карти густоти рослинності показує, що внаслідок сильного змиву на субальпійських луках виникли серйозні екологічні ускладнення.

Висновок: Аналіз карти густоти рослинності показує, що внаслідок сильного змиву на субальпійських луках виникли серйозні екологічні ускладнення.

Висновок: Аналіз карти густоти рослинності показує, що внаслідок сильного змиву на субальпійських луках виникли серйозні екологічні ускладнення.

Висновок: Аналіз карти густоти рослинності показує, що внаслідок сильного змиву на субальпійських луках виникли серйозні екологічні ускладнення.

Висновок: Аналіз карти густоти рослинності показує, що внаслідок сильного змиву на субальпійських луках виникли серйозні екологічні ускладнення.

Висновок: Аналіз карти густоти рослинності показує, що внаслідок сильного змиву на субальпійських луках виникли серйозні екологічні ускладнення.

Висновок: Аналіз карти густоти рослинності показує, що внаслідок сильного змиву на субальпійських луках виникли серйозні екологічні ускладнення.

Висновок: Аналіз карти густоти рослинності показує, що внаслідок сильного змиву на субальпійських луках виникли серйозні екологічні ускладнення.

Висновок: Аналіз карти густоти рослинності показує, що внаслідок сильного змиву на субальпійських луках виникли серйозні екологічні ускладнення.

Висновок: Аналіз карти густоти рослинності показує, що внаслідок сильного змиву на субальпійських луках виникли серйозні екологічні ускладнення.

Висновок: Аналіз карти густоти рослинності показує, що внаслідок сильного змиву на субальпійських луках виникли серйозні екологічні ускладнення.

Висновок: Аналіз карти густоти рослинності показує, що внаслідок сильного змиву на субальпійських луках виникли серйозні екологічні ускладнення.

Висновок: Аналіз карти густоти рослинності показує, що внаслідок сильного змиву на субальпійських луках виникли серйозні екологічні ускладнення.

Висновок: Аналіз карти густоти рослинності показує, що внаслідок сильного змиву на субальпійських луках виникли серйозні екологічні ускладнення.

Висновок: Аналіз карти густоти рослинності показує, що внаслідок сильного змиву на субальпійських луках виникли серйозні екологічні ускладнення.
some places, a high mountain-meadow landscape zone covering a large area in the northern and north-eastern parts of the Lesser Caucasus.

Statement of the basic materials. High mountain-meadow complex - covers a very large area in the high mountain-meadow landscape zone in the northern and north-eastern parts of the Lesser Caucasus. The high mountain-meadow zone has a very complex geological and geomorphological structure. These landscape units are sharply divided vertically and horizontally depending on environmental conditions. The slope of this complex is 40-450, there are many ravine-gobu networks. The large scale of avalanches has led to a sharp fragmentation of the surface of mountain meadows [8, pp. 316-317]. As a result of unsystematic, over-normative, non-seasonal grazing of pastures, the meadows were overgrown, the surface cover was destroyed, eroded and bare steppes were formed in large areas. Intensive pasture erosion has caused many ecological consequences.

Map 1: Vegetation density on the north-eastern slope of the Lesser Caucasus

<table>
<thead>
<tr>
<th>Plant density</th>
<th>Field ha</th>
<th>Ratio in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>109858</td>
<td>23</td>
</tr>
<tr>
<td>close</td>
<td>119974</td>
<td>25</td>
</tr>
<tr>
<td>midle</td>
<td>95852</td>
<td>20</td>
</tr>
<tr>
<td>weak</td>
<td>81718</td>
<td>17</td>
</tr>
<tr>
<td>very weak</td>
<td>75442</td>
<td>16</td>
</tr>
</tbody>
</table>

Source: [10]

Analysis of the vegetation density map based on the analysis of information from satellite images shows that in the subalpine meadows, rapid washing and numerous roads, especially cattle trails, disrupt the integrity of the meadows and
create serious environmental consequences. As a result, the area of bare slopes deprived of vegetation increases, creating conditions for the formation of floodplains. This situation is especially characteristic of the southeastern and southeastern slopes of Shahdag and Murovdag.

Mountain-forest complex zone - The territory of the mountain-forest complex we studied is characterized by a large slope and fragmentation of the relief. There is also a wide network of ravines. In the northern and north-eastern part of the Lesser Caucasus, the area has undergone significant changes as a result of natural and anthropogenic factors.

Tectonic movements, avalanches, landslides, as well as erosion processes have caused a sharp deformation of the area. Brown mountain-forest soils are spread on the upper borders of the mountain-forest complex. Here, mainly oak and beech trees cover large areas. At an altitude of 1800-2000 meters above sea level, low-growing dust trees also swallow large areas. Brown mountain-forest soils are formed in the lower part of the forest complex. Here, mainly oak and oak-hornbeam trees form the forest cover. In this part of the forest complex, the process of erosion as a result of systematic felling of trees and grazing of livestock is widespread. Rainfall that falls to the surface as a result of intensive deforestation destroys the soil surface, creating catastrophic surface erosion and creating flood currents by creating currents instead of infiltrating the lower layers. Deforestation disturbs the natural balance of landscapes. It should be noted that mountains are soil-protective, water-regulating and other ecologically important [1].

Map 2. View map of the north-eastern slope of the Lesser Caucasus

Source: [10]

In the visibility map compiled on the basis of ArcGis software, the slopes are divided into 4 main and 4 transition azimuth slopes (north-0, north-east-45, east-90, south-east-135, south-180, south-west-225, west -270, north-west – 315) formed landscape types were analyzed [4, p.47].
The vast majority of the landscape is concentrated on the north-east (144797 ha or 17%), east (127653 ha or 15%), north-west 115795 ha or 14% of the exposure slopes. Slopes with less visibility in this region are on the southern (9%), south-western (8%), western (9%) exposure slopes [2, pp.119-120].

It was found that up to 80% of the humid landscapes formed in the region were formed on the more humid northern, north-eastern and north-western exposure slopes. Analysis of these landscapes shows that exodonamic processes (fragmentation, crust formation) intensify on slopes where moisture is more concentrated. Most landslides in the Shakerbeyli, Gaflangala, and Chingilli mountains occur on azimuths 450 3150 and 00 and on slopes with these intervals. Only 20-25% of active landslides are on the southern, south-eastern and south-western exposure slopes in these massifs. Most of the landslides (75-85%) occurred on the northern slopes [5, p. 242].

These processes must also be applied to avalanches. It should be noted that in accordance with the exposure of mountain slopes, erosion processes are observed at a certain intensity.

Shrubby mountain-forest-meadow-steppe complex - mountain-forest, steppe-meadow-shrub complex within the landscape types covers a relatively limited area in the region. It is mainly distributed in the Goygol-Shamkir area at an altitude of 500-700 m above sea level, in intermountain depressions and large river basins [9, p. 57]. Gravitational and erosion-denudation processes play an important role in the formation and development of relief. As a result, a lot of money is spent every year to prevent landslides and erosion.

Mountain-steppe complex Mountain-steppe complexes cover large areas in the low and middle mountains of the Lesser Caucasus. Arid denudation and erosion-denudation processes prevail in the formation of landscapes here. The intensity of these processes depends on the absolute and relative altitude, the slope of the surface, the lithological composition of the rocks and climatic conditions.

Semi-deserts of foothill plains - this landscape form has a wide area, covering
arid areas of foothills, wide river valleys. Extremely arid conditions prevail in the zone. In this landscape, the soil is highly mineralized and the saline groundwater is close to the surface. Widespread saline and saline soils and reclamation measures are necessary here [3, p. 258].

Analysis of the natural historical conditions of the north-eastern part of the Lesser Caucasus shows that at a short distance, the natural landscapes alternate along the belt and reach from the high mountains to the semi-desert zone. This manifestation of the vertical belt is an important pattern that has no analogues in the region. Such patterns can be observed in very few places in the world.

Conclusion: The analysis of the vegetation density map shows that serious ecological complications have occurred as a result of severe washing in subalpine meadows.

The slope of the high mountain-meadow complex is 40-45°, and there are many ravine-gobu networks [6, p.154]. The large scale of avalanches has led to a sharp fragmentation of the surface of mountain meadows. Intensive pasture erosion has caused many ecological consequences.

- The semi-deserts of the foothills have a wide area and are dominated by sharply arid conditions. The high degree of mineralization of the soil in this landscape necessitates the widespread use of saline and saline soils and reclamation measures.
- In order to protect mountain-meadow landscapes in pastures from soil erosion, pastures should be used systematically.

References:

10. www.usgs.explorer

Література:
10. www.usgs.explorer